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Abstract

Methods are described for celculating the energy levels for
the overall rotation and internal torsion of mclecules consisting
of a rigid symnetrical top attached to a rigid asymmetrical frame-
vork in such & wvay that the symmetry axis of the top coincides with
a principsl axis of the molecule. Probable examples are nitromethane
and CH3BF2’ Matrix perturbation methods are employed to obtain
finite rotational secular equations valid in each of the cases:
low barrier, high barrier, low asymmetry. These secular equations
are modificetions of the ordinary Wang equation for the rigid
asymmetric rotor and can usually be solved by the continued fraction
method. The symmetry groups epplicable to this problem are also

discussed.
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Molecules such as CH31-’.,1,> or nitrometlane '{:EBan) mxy shew overal. ro<ation,

internsl torsion of the methyl group relative to Thke N?D group, end vibraticn,

1l ot " :
- Microwave spectra due to these mctlong have bees receainly reported for
nitromethane by Tannenbaum, Johnsov,; Myers, snd Zwinn, J. Chem. Pays. 22,

949 (1954).

~
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For the purpose of treating the overall rwiaticn and internsl torsica, it is

®

3]

» 28

convenient to thirk of the BF2 or ch /red

attached a symmetricsl top (CB3) whish nay rovete or vikrate about ar axis

rl2ld frzmeworx to which is

colinear with & principsl axis of inertis of the whale molecule, Furthermore,
the three principal momeunts cof inertia cof the whole ﬁn?éeule nre sll different
and are uninfluenced by the intermnal orienkhsatiorn 27 ¥z sithicted top. The

calculation of the rotatiorval and isterzal torsi~i il e.ergy levels of this
: - ;

class of molecules is the subject cf the present Logei.

The class treated here iz Ix some ways simpler [ain the. case oFf methyl
alcohol which has been thoroughly stulied by Demniss: sné cowerkers (see
Ivash and Dennison, J. Chem. Phys. 21, 180% {395L) } but the appros:h differs
gomevhat. -

Modei and Coordinates'

The model then consists of two zonnected rigiia voddes, one (the top)

> For a discussicn of vibrations in mclecules »~f this type, see B, L.
Crawford, Jr. and E. B. Wilson, Jr., J. Chem. Phys. 9, 323 (1941).

having two equal principal moments of inertia about axes perpendicuiar to a
principal axis of the wkole molecuie. There are four fdegrces of freedom,
three for overall rotation and one for rotstion of the top ebout its unigue

axis. See Fig. 1.



Let x,y,z be moving cartesian axee rigidly attached to the framework part
of the molecule and coineident with the principai axes of inertias of the whole
molecule (origin i1s at center of mass of whole moiecule). The z axis will
coincide with the symmetry axis of the top. The three Eulerian angles °,P,
and)(, of x,¥,2 relative to space-fixed azxes will Zdesciride the overall orienmtstion
of the molecule, while the angle « will give the relatilve orientation of ter

&ud framework.

The Hamiltonlan

The kinetic energy has previcusly been writter asu

" 8. L. Crawford, Jr., J. Chem. Phys. §_, 273 {.oL0),

2 2 2 2 ’
oT = I W, + Iy(,uy +I,0W," + 12 + dlacza)z (1)

in which Ia is the moment of inertia of the top sbauat its symmetry axis,
Ix’ Iy’ I-.- are the yprincipal moments of the entire mo: :cule, and Q)x, W ¥’
a_)z are components of angular velocity of the framework along x,y,z. It has

been usua.:l.5 t0 eliminate the cross-product terms by means of a transformation,

> See K. S. Pitzer and W. D. Gwinn, J. Chem. Phys. 10, 428 (1942).

but this will not be done in this treatment.

To obtain the Hamiltonian form, use the definitions of the momenta:
p=9T1/2q, P = 3T/o0L), ete. (2)

This lsads in the usual way to the form

2 2 2 2 .
H-APx +BPy +CP. " + Fp —ECpPz-a-V(a) (3)



in which ell angular momenta are in units K = h/2T and
AeghP, B3R, 0= 3 RE/(T,T), B - 2—.*\212/[10,(%-:‘,)] (%)

V{a) is the potential energy restricting the internal rotation. In the

model used here, the coefficiénts are all constants. Note that C involves

the moment of inertia of the framswork part alone while F contains the reduced
moment of ‘he two parts of the molecule.

The quantities Px’ 1-"y and Il>z were defined in Eq. {2) but by using the
basic definition of angular momentum it is easy to show that they are equal
to the components of the tctal anguler momentum of the molecule (in units h/2 TT),
including the contributions arising from any internal rotation of the top.
Similarly it can be shown that p is the total contribution ¢f the motion of
the top atoms to the z component of angular momentum, including both the
internal and oversll motions.

This classical Hamiltonlan becomes a guantum mechanical operator or
alternately a matrix by regarding Px’ Py, Pz and p as operators or matrices.

The commutation rule36 are

6 0. Klein, Zeits. f. Physik _5§, 730 (1929).
P,jpk - PkPJ = -iPQ, (J,k,Q: Xx,¥,z in cyclic order) (5)
and
p_PJ - PJP =0 J = X,Y¥,2 (6)

The first rule is the standard one for the components of angular momenta along

molecule-fixed axes while the second follows from the fact that, as an operator



P= - i(a/aa)e)¢x (7)

whereas the P 1'3 do not involve Q.

By inserting in H tlﬁ expressions for the Pi in terms of P p?
and Py and in turn treating these latter momenta as differential operstors,
the Schridinger wave equation in the variables O, ? ’ %, a could be written
down, but this is not necessary for the solution of the problea.

To simplify the later equations, let

H' = [m- 1)(1>x2 + pya + Pzaﬂ /(c-D) (8)
in which D= % (A + B) (9)
Then

M avel2 -2 e - awp, v %4 V(@) (20)
vith

b=z (A -B)/(c -D)

d = 2¢/(C - D)

t = F/(C - D) e
V' = V/(C - D)
Then 1f_A'is an eigenvalue of N’, the energy is given by
Wa=J(J+1)D+ (C-D)A (12)

N', as well as H, is dlagenal in J and ¥ so only one JN block need be
congidered at a time.

Symmetry Considerations

It is well known that the rigid asymmetric rotor wave equation is invariat
under the group of 180° rotationms aboyxt each of the prircipal axes. These

operstions variously change the signs of the P1 s> which leaves the energy



expression unaltered. In the jresen: prablem the zxiz-Term ia pPZ is not
Invariant unless p changes sign whken Pz dues. If the potertisl enmergy V{ia)

is an even function of @, then the four cperatiozs E, Cx, Cy’ Cz whosze effects
are listed below will s+ill leave E inveriant sad will form & group {the

"Pour-group") as before.

Table I. Effect of Four-iroup Symmetry Onersticrs

E Cx c:g cz
Bi=>F; P —>P_ P —>F, P,—>P,
Py,’i_> 'Py,z Px,z—e ”Px_.,z Px,,zr—a 'Px,y
P—>p p—>-p r—>-p r—>p
(a—>a) (d— ) (Y -0) f——aa)
(6 —>0) (6—>TT-e) {5y Tt} 10 —> 9)
(f—9) @—T+P) @ -—>T7+9) P —>0)

(x—=%) (X—am-x) (K- %) (L~ X)

Consequently every solution of the wave equation will beloug to one of

the four species A, Bx’ By’ Bz of this group7 a8 in the case of the asymmetric

1 See G. W. King, R. M. Hsiner, and P. C. Cross, J. Chem., Phys. 11,
27 (1943).

rotor, but here the part of the function involving a must be included. Further,
any secular equation or energy matrix can be factored into at least four factors

by using the above symmetry.



Often V(a) will possess additiossl aymmetry pronersies. For exsaple, io
nitromethane, it presumably is Iyvarisnt tnder @—30C + QTTK/S, where
k = 0,1,2,3,4,5. Ip addition, ¢ —>{2TTk/E} - e skawid alsc leave V unshange’.
Thesé operations are isomorphous witi: the paint grour Gsv 2uh this group is
not here used in the same way as when grouy thecry is wiplied tc the viopration
problem.

The symmetry of V{a) caruot te inllscrimiuetely appiled to E because p
appears in the cross term. However; the "rotoaticoe” @ -=>a + 2TWk/3 {here
8 = 6) do leave H invarisnt. So do the "reflestions" O —>(2Tx/s) - a if
simultaneocusly Pz-—>-Pz. The four-groap cperationg listed enrlier and tte
s internal rotations @ —> @ + 2]7k/s generste s gevuy <& be gperatioms.
Tatle II shows the result when s = 3; ia whies bese it @rour 1s lsomorphous

with the group C6v‘

Table II. Chsracter Tauie for Jase : = 3.

~ AR : Tollre
Class E 2C3 BCxC3 . g | 3\.}'\,3

A 1 1 1 1 i i
B, 1 1 =l 1 . il
E, 2 =], 0 2 =1 0

= =3 =3
B, 1 1 1 1 g
By 1 i -1 -3 =l 1
E, 2 1, 0 -2 1 0




The one-dimensional species are here labelled so that they correspond to the
species for the subgroup V. The degenerate specles El would become AV + Bz,
in the subgroup while E2 would yield Bx + By.
The case 8 = 6 18 easily constructed from the sbove table because the
new group is cbtained by introducing the additional operation 063 vhich
causes d—>a + 1T, This commutes with a1l operations above so the new growp

has twice as many classes and twice as many species as the old., See Table III,

Table III. Character Table for Case 8 = 6,

3 3 3 3 ) 3

E 2c3 5°x°3 c, 2czc3 3<:yc5 Cg 2c3c6 3°;°3°6 c,Cg 29:"5"6 acyc3c6
A, [1 1 1 1 1 1 1 1 1 1 1 3
= 2 -1 1 1 <1 1 1 -1 1 1 -1
E,|2 o} 2 -1 o} 2 -1 o} 2 -1 o}
Bl 1 1 |- -1 -1 1 1 1 -1 -1 <1
n” 1 1 1 |-1 o1 i 1 1 =1 -1 -1 1
Bpgf{2 -1 o |2 1 o} 2 -1 o 2 1 0
LSS F 1 1 ] 1 i <1 <3 =1 <1 <1
|l 1 «l 1 1 -1 R -1 +1 -1 -1 +1
E |2 2 o} 2 <. 0 2 1 0 -2 1 o}
B |1 1 1 |1 <1 5 S =% = | 1 1 1
Byo 1 1 A1 |1 -1 1 =1 1 1 1 -1
B2 -2 o [-2 1 0 -2 1 o} 2 -1 o}




These higher symmetries permit further factoring of the secular equation
or energy matrix if the expansion functions are chosen to have symmsiries in
accord with the various species.

The dipole moment/u. for this model would ordinarily be along the z exis,
If this is the case, u will have the symmetry Bz in Table II and in the case
8 = 6 it will belong to Bze' Consequently, for this case, the selection rules
for dipole sbsorption will be (8 = 3): Ae>B, Bx(—>By, ElH E, E,¢) E,.
The rules will apply for the case s = 6 with the additional condition that e
specles go only into e specles, and o species into o species.

Nuclear permutation effects will be governed by the symmetry also. The
suogroup which governs the exchange of the oxygen atoms in nitromethane or
the fluorines in CE.jBF'2 consists of E and CZCZ slnce to exchange thesa atoms
requires that a<—a + T, X« + T, which is C,lgs Ags Boos Byps By
are even, the other species odd to this operation. Therefore only
160)

Byo’ E20

the first set can occur in nitromethane (with . In CBBBF2 these species

will have three times the fluorine spin weight of the others. The operations

2
3

degenerate species are of spacies A in this subgroup, all the degenerate specles

03 » C, exchange two pairs of H atoms in the sbove molecules. All the non-

will be degenerate in tke subgroup. The two kinds of levels will then have

equel proton spin welght.

The Energ_y Matrix

If the asymmetry (b) were zero and there were no barrier (V'), the

reduced Hamiltonian 3{ ‘would ve

2

P,” - apP, + fp (13)



which yields a diagonal matrix with the basis functicns

S (B F ) e Fel™ (1%)
in which S is the 0,9 factor of the symmetric rotor wave function and
K=0,41,42, ;.. +J ; m = 0,+1,+2, ... o0, (15)
These functions may be used to set up a matrix for the general form of
9 2 ; i.e. the true wave functions may be expanded in terms of the functions
above. The esymmetry tetm in b wiil give off-diagonsl elements the same as

those which occur with the rigid asymmetric rotor (with C calculated for

framework only). The barrier potential V' is usually assumed to be of the form

] .
v -;—vc; (1L -cos sa)=xvy -E Ve (25% 5 o258 (16)

2 o
in which s is the number of equivalent minima and (C-D)Vc" = Vo is the barrier
height. The barrier will also introduce off-diagonzl elements. The matrix

for ¢ 'will then have the non-vanishing elemem;s-8

8 See ref. T for the matrix elements of Px’ Py’ and Pz.
= ¥ iy ox® . 2
Fn, ¥, - 'j/Km,Km 5V K° - amk + fm
1
2
SUREN I [ S
%K,m;K-b?,m = O, ki2 = 3 b{[.]z - (K+1)°] J(3+1)° - (k+1) (17)
1
MK,m;K,mts =-g %" j’

Here the constant ;‘—Vc', bas been incorporated so that the eigenvalues of }/

are related to those of M’ by
A= A+ ]f- s (18)

o]
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Unless the barrier height 1s zero, this form of,ﬁ#-corresponds to an
infinite secular equation. Note, however, that there are no elements connect-
ing even with odd K values so that the secular equation factors into one for

even and one for odd K values. (This is part of the factoring into different

symmetry species.)

Case of Free Internal Rotation

When the barrier height is zero,if:: - %—V& = 0 and the energy matrix
becomes diagonal in m, The secular equation therefore factors into cne
block for each value of m, as well as into even znd odd K factors.

The secular equation for a given velue of J,M,m has the elements

(KIK) = K© - amk - A ;

1
2
(K|K £ 2) = by o = 1o L[Jz - @)?][n)? - (xil)a_)} (29)
The energy W is then related to the roots A by the equation (see Eq. 12).
WeJd(J+1)D+ 3V +F + (CDA (20)
9

This secular equation is similar to the Wang” equation for the ordinary

9 5. C. Wang, Phys. Rev. 3k, 243 (1929).

rigid asymmetric rotor except for ithe added term -dmK on the diagonal. This
term spoils the additional factoring possible in the rigid case.

As an example, consider the case J = 5, K even. This factor becomes



16 + bmd -A 631 0 0 0 I
6V3 b b +2mid -A 10 b 0 0
0 210 b -A V210 b 0 =0
0 0 /210 b b -2md - 6 V3 b (21)
) 0 6 AR 16 - 4 md -A

For each non-vanishing value of |mj, there will %= two identical such
equations, so all levels are doubly degenerate uniess m = C. In the latter
case, the ordinary rigid rotor levels are obtained, except that the moment of
inertis about the z axis is the moment of the framework group (Iz - Ia) as
already seen.

The energy levels in the free rotation case must of course conform to
the symmetry restrictions given for the genersl case. Thus, with s = 3 or 6,
if m is not a multiple of 3, the symmetry is one of the degenerate E species,
If m is a multiple of 3, the levels involve A or B species which would be split
into non-degenerate components if there were a sufficient barrier, If K is
even, the species may be A, B, or E,; if K 1s odd, B_, By or E,o ¥ 8 = 6,
the species further divide into even or odd (denoted ty subscripts e and o)
according as m is even or odd.

The selection rules for dipole radiation involve

AT =0, 41 (22)
as for the rigid asymmetric rotor. The symmetry reguirements discussed
earlier must also be met. Igj; 18 along the z axis, X cannot change parity.

The rule for m is
Ar = 0 (23)
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This follows from the fact that the dipole moment does not depend on &
whereas the wavefunction involves @ only through the factor

imo
e

For small asymmetry the energy levels may be expanded in powers of b.
For large values of the quantum rumber n, the dlagonal elements cf the
secular equation will be large and the first terms in the expansion in powers

of b may be adequate. Second-order perturbation theory then gives
A=K -mdK+ (b2/8) (E]’Q - (K-l)e] l:(.3'+1)2-(l(-l)2j /(2K-md-2)}
-(b2/8){[J2-(K+1)2] [ )2-(x+1)'=j /(2K -mds2 )} F (24)

For very large values of m,

A — K - nd K. (25)
For transiticns with AJ = 1, AK = 0, Am = O; the transitions with large values
of m would then tend to converge (from both sides;) to a band head. Of course
the intensities of these higher members would tend to decrease because of the

unfavorable Boltzmann factors.

Case of Low Barrier

If the barrier height Vo is small but not negligible (compared with the

quantity F), a useful solution can be obtained with the Ven Vleck perturbation

method.lo The reduced hamiltonian matrix% of Eg. 17 is split into an

A9 See E. C. Kemble, The Fundamental Principles of Quantum Mechanics,
McGraw-Hill, New York, 1937. p. 39h.

unperturbed, completely dlagonsl matrix 3{ 2 with disgonal elements

%gm,m = K2 - amK 4 fuo (26)



and 2 perturbation %?" with elements .
-3
s one ] [ - ]
%K,m;KtQ,m_' Pg,ke2 = 5 ° [‘72 - (K£1)%] [(3+1)° - (K41)

‘ (21)
T 1 1
X i,m;x,mis‘s =g VL= - p e - D)

The Van Vleck transformation reduces the elements off-diagonal in m to order

S 2. If these are then neglected, the secular equation becomes

(X|K) = K° - amK + (1/s) §° {(1/[Kd-(2rn+a)f]) - (1/[xd-(an-s)rj)} -}}98)

(x IK12) = bl(,KtQ

This secular equaticn is simiiar in its properties to that for free rotation.
It is not valid, Lowever, for the case m = + % 8, 8 even, becsuse then a near
degeneracy occurs. For this case, the umperturbed stafes wvithn = + é s nust
both be taken into consideration. The equation then has the non-vanishing

elements
(3K 3,K) = K - ;_- asxX+ (1/5)[52/(1&1 . 25f)] = A
(SK|5K) =K+ 3a's K - (1/5)[3 2/(xa + 2sf)]-/\

2K = ) (29)

(5:K
8 8
(5K| 3%s2) = By g

8 8
(-3,K|-5rKs2). = g, k2
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Because of the symmetry (%)K tgvx=) = (m%,-K 3'%3 -K) +this larger secular

equation can be factored into two factors, similar to the way iz which the
Wang equation is factored. This leads to a splitting of the degeneracy.

When m is not a multiple of % 8, the levels are inherently doubly degenerate
for all barriers, For m a multiple of % s the degeneracy 1is uitimately split
at high enough berriers. With the approximetion given here this asplitting will
not appear except for m = % 8. The higher the multirle of %-s the higher the
order of perturbation required to demonstrate the splitting.

The quantum number m 1s no longer & good gquantum number when there is
a barrier but if Vb is small 1t can stiil be used to label the levels. The

selection rule Am = O i nc longer exact and must be replaced by the rigorous

sympnetry sclection rules given earlier.

High Barriers

If the barrier is sufficlently high so that the torsional levels of a
given symetry are widely spaced compared with the rotational levels, a
different perturbation treatment is possible, in which the asymmetry and the
coupling term are treated as perturbations by the Van Vleck procedure. This
leads as before to a rotational secular equation. The unperturbed operator
for the ée¢nergy 1s

H = DP° + (C-D) Pi + Fp© + V(@) (30)

while the perturbation operator is

B =} (52 - #2) - 2cp, (31)
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Ho can be diagonalized with the basis functions

iK '

§ 1q(©> P ) e pa) (32)
in which symmetric rotor functions are used as before and the U's are eigen-
functions of

2 A} oy . fee\
[FP % V(a;l Uv}ff = B Uv¥ \J21)

The torsional states are described by the quantum numbers v){, where v is the

principal quantum number of the vibrational level, and }{ is a degeneracy index.
For the potential function of equation {(16), the nor-degenerate (§ = 0)

eigenvalues of the torsional equation (%3), which is now related to the

Mathieu equation, can be obtained from pub:l.:lefnedl1 tabulations through the

AL Tables Relating to Mathieu Functions; Columbia University Press,
New York, 1951.

connection

2

E, = ]ﬁs F ber(S) or ]ﬁ 82 Fbor(S) (34)

8 = (4/s°)(V,/F) (35)

and the eigenvalues 'be.r and bo p 8Te given in the tables as functions of the
parameter S. The values of the quantum number v = 0,1,2,3,4, etc. are

identified respectively with the eigenvalues beo, b°2‘ 'be2 " boh - beh, etc.
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The degenerate levels have not been tabulated but can be calculated to any
desired degree of accuracy by expansion of the eigenfunction in a Fouriler series.
Another method is, however, easler and is reascnably accurate for high barriers.
Make the substitution

M

Uy = e u(e) (37)
in Eq. (33), where ¥ = 0, 1, or -1. The equatior for u is then

[Fp2 + 2Rt + FAZ 4 v] u = E gu (38)
1t ¥ = 0, the equation gives the non-degenerate eigenvalues and their eigen-
functions, both of which are available as tsbulations. If ¥ = +1, the
degenerate levels are obtained. Bt the terms involving € in Eq. (38) cen
i)e considered as perturbations on the K = O case, if the barrier 1s high

: 2
snough. The term in X- obviously just subtracts from E W To the second-

order the effect of the terms in X and Kg is

!
By = By + PE + ke Zv |pw,|2/(n,,° -Eng) (39
in which the sum is over all the non-degsnerate level;. and
*
Poyr = -1 v (Qu, /2a)
o0 o0 1
= mg-;o mAvav'm/ g._g‘oA?rm m;i:‘co As'm ? (ko)

Here~ ve have expanded the non-degenerate eigenfunctions as

U (a)=i A em‘%

A i) v
n= -0



These Fourier coefficients may be found from the tabulations of reference 11

by the identification

Av,_sk = Av’sk = (-1)kne2k(s), k£0
Av,o = 2De°(S) for even Vv

. .k
A, ex ™ °Av,sk = (-l)"Doak(S) for odd v

The perturbation E, of Eq. (31) now needs to be introduced by the Van
Vleck procedure. BHowever, for the degenerate torsional states, it is con-
venient to combine this perturbation with that given above, yielding the

secular equation

(KEIX) = K° - a'¥K - A"

‘ = b1
K[k + 2) = %—b'{[.)z sk 1) [ Bk 1)2]}'5 (1)
with W= J(3+41)D + E  + FY2 + A" (c'-D)
C'=C(1 + hC/a)
a' = 2¢(1 + 4Fp@)/(c*-D) (42)

F' = F(1 + ll»F{O)

/O = Z, ipvv'lzl(zvo - F“'v'o)
vl
b' = %—(A—B)/(C'-D)

Very High Barrisrs

If the barrier V is sufficiently high, the lower energy levels should
approximate those of g rigid rotor with moments of inertia Ix’ Iy, I o
(not Iz - Ia) and & Barmonic torsional vibrator with a reduced moment of

inertia

18
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I (I, - 1)/1, (43)
and potential eunergy

% (a%v/aa®) ocz2 (bk)
This result can be shown to follow from Eq. (41) ard (42), since

hﬁf) —> -1 (45)
for high barriers in which harmonic oscillator functions can be used for
U, in Eq. (%0).

The energy levels of rotation are ther calculable by the standard methods

used for the rigid asymeetric rotor. The torsional levels will be degenersate,
three-fold if n = 3, six-fold if n = 6. However, some of this degeneracy may

be eliminated when permutation symmetry occurs, as in nitromethane, whose

levels will be only three-fold degenerate.

Case cf Small Asymmetry

In cases for which the approximations so far described are all inadequate,

anothsr approsch can be utsecl,l2 as long as the asymmetry of the molecule is

18 This 18 very close to that introduced by Dennison; ref. 1.

small. Let the rsduced energy matrix 3(:' or Eq. (10) be set up in terms of

the basis functions
eix-xsm(e »P )xx(a) (46)

in which S 1s a symmetric rotor function and %x(a) is a periodiec function

of & which 18 an eigenfunction of the equation

[5° - @i + V@ o) = vy Vi) o)
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with eigenvalue W K enters as a parameter. The non-vanishing matrix

vK*
elenents for j/ ‘then become
’4
J'{vl(,vl( =%+ WK
s ’ = )]
v,K3v' K2 = PK k2 OvK,viKe2 (48)
2T .
Nheme Av,K;v',K-r? = J‘VVK ) v',K+2 da, (29)

which enters because %s for different K's are not orthogonal.
The existence of the terms off-diagonal in v spoils the faetoring into
v-blocks but these terms are normally small and can be reduced to lower order

by a Van Vleck transformation. This yleids a rotational secular equation

(K|K) = K2 W - N
!
[} 2 2
¥ bK:K*2l Zv’—." 'AVK,V'K-t-?.I [Ggg - ¥y igyp)
+ ‘bK,K-’e l2 ; IA\.rKjx_rlK=2 \' 2/(w.'-K = wvux_a) (50)

(K[K2) = B g0 Aoy, xee

LSRN o 2% Ax,virge Nokae, vl

v‘
L wv'Kfc‘

Koehler and Dennison'> have shown that the quantities W_

X can be obtained

13 7. 5. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940).




fror a con’ inued fraction of the form

1 1 1
S=n, - M-8 -¥ -8 -H,-E-...

1 i 1 (51)
-ulfg-uz-g-n_’-g-
M£ = h;jF (ﬂ = 8)29 2 = 0,+1,+2
g = [(CK/F) -}e)]/s, X=0,1,2, .... 81 (52)
W= %v& = [C?K?'/F(C-D)] + 8¢ 5

To calculate the A'e continued fractions may &lsc be used., The function

KX is expanded in a Fourier series:

o
2. s
%K - ) Anl"_,m <

This is substituted in the differential eguation (47) and leads to a set of
simultanecus equations for the coefficients A:

+G_A =0

e
An!(,m-s n "nK,m AnK,nH-s

where 1 5
G, =5M -1-(2Fs _/vo)j

These simultaneous equations yield the continued fraction

_A:ngs PR 1
nK,m Gy - Gpyg ~ Onypg = +-°
The normalizstion condition i
2
2™ IAn!(,m‘ ®d

m=-co

21
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ercbles the determination ¢Z the A's to be completeqd.

There will of course b= an infinite number cf roots for each value of K
and Y. These roots are most conveniently caliculated if none of the denominatore
Ml -:g- eee. are small. If one of these should turn out to be small, the continued
fraction should be tranasformmed sc that the offending Hﬁ appears in the leading

position; i.e.
1 1
=M. - =
.‘é n Mﬁ-l"g =] M‘Q_e-g ™ eee

(53)

3
i Mﬂ-l:g - Mﬁ+2'=g =
For each root sought, there will be an spprorriaste choice of the leading term
M,Q which will cause the most rapid convergence.

The various values of Be 7ield the different compcuent levels which in
the limit of high barriers =cme together %c form e {degererste) harmonic
oscilllator level. ﬁowever s Koehler. and Der.nison;} shoved that the roots
aere periodic functions of X (as may also be seea frrm Ej. 51) with period
Fs/C. Furthermore, if this periodic function is known for the case Y= 0,
it can be used to calculate the roots for the other values of )eby a phase
shift,”" i.e. by reading off the value of 5 for

K =K - F)}/c
froni the same periocdic curve used for )Qa C.
. For sufficiently high marriers the dependence of Z on K and X venishes.,

This suggests expanding 5 ms 8 Fourier series (only cosine terms will eppear)
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3: Z_ + é cos 27T g + §2 cos BT g+ vuu

For high enough barriers only a few terms are required. The coefficients

;0 5 51, 52 can be found by solving the continued fraction for the necessary
number of values of g, conveniently chosen tc meke it easy to solve for the
required number of §'s. The value of §° can also be cbtained from available

tablesll by means of the relatlon:
T_1 1
S5=1 ber(S) or ¢ bov(S)
vith S = bV!/s°¢ = WV_/s°F

-Then the A's may be written
Z
= 2 A A
Ay 1kt ,nK ”m= 2 'K’ ,m “nK,m

In some cases, especlally when b is sufficiently low, the (K|Kih) elements of
the secular equation (50) can be neglected altogether., However, this procedure
is not always valld. Under such circumstances the secular equation can be

made easier to solve by various transformations which reduce the order of the
troublesome K,Kih elemeuts o thcot they can be ignored and the remaining equation
treated by the continued fraction method. These transformationgj’.:imilar to

Van Vieck transformaticns bvrt have to be adspied to the several cases which

arise because of near-degeneracies and will therefore not be detalled here,
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